0 CpxTRS
↳1 RenamingProof (⇔, 0 ms)
↳2 CpxRelTRS
↳3 SlicingProof (LOWER BOUND(ID), 0 ms)
↳4 CpxRelTRS
↳5 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 typed CpxTrs
↳7 OrderProof (LOWER BOUND(ID), 0 ms)
↳8 typed CpxTrs
↳9 RewriteLemmaProof (LOWER BOUND(ID), 402 ms)
↳10 BEST
↳11 typed CpxTrs
↳12 RewriteLemmaProof (LOWER BOUND(ID), 1358 ms)
↳13 BEST
↳14 typed CpxTrs
↳15 LowerBoundsProof (⇔, 0 ms)
↳16 BOUNDS(n^2, INF)
↳17 typed CpxTrs
↳18 LowerBoundsProof (⇔, 0 ms)
↳19 BOUNDS(n^2, INF)
↳20 typed CpxTrs
↳21 LowerBoundsProof (⇔, 0 ms)
↳22 BOUNDS(n^1, INF)
fac(s(x)) → *(fac(p(s(x))), s(x))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
fac(s(x)) → *'(fac(p(s(x))), s(x))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
fac(s(x)) → *'(fac(p(s(x))))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
They will be analysed ascendingly in the following order:
p < fac
Generator Equations:
gen_*'3_0(0) ⇔ hole_*'1_0
gen_*'3_0(+(x, 1)) ⇔ *'(gen_*'3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
p, fac
They will be analysed ascendingly in the following order:
p < fac
Induction Base:
p(gen_s:0'4_0(+(1, 0))) →RΩ(1)
0'
Induction Step:
p(gen_s:0'4_0(+(1, +(n6_0, 1)))) →RΩ(1)
s(p(s(gen_s:0'4_0(n6_0)))) →IH
s(gen_s:0'4_0(c7_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
p(gen_s:0'4_0(+(1, n6_0))) → gen_s:0'4_0(n6_0), rt ∈ Ω(1 + n60)
Generator Equations:
gen_*'3_0(0) ⇔ hole_*'1_0
gen_*'3_0(+(x, 1)) ⇔ *'(gen_*'3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
fac
Induction Base:
fac(gen_s:0'4_0(+(1, 0)))
Induction Step:
fac(gen_s:0'4_0(+(1, +(n213_0, 1)))) →RΩ(1)
*'(fac(p(s(gen_s:0'4_0(+(1, n213_0)))))) →LΩ(2 + n2130)
*'(fac(gen_s:0'4_0(+(1, n213_0)))) →IH
*'(*5_0)
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
Lemmas:
p(gen_s:0'4_0(+(1, n6_0))) → gen_s:0'4_0(n6_0), rt ∈ Ω(1 + n60)
fac(gen_s:0'4_0(+(1, n213_0))) → *5_0, rt ∈ Ω(n2130 + n21302)
Generator Equations:
gen_*'3_0(0) ⇔ hole_*'1_0
gen_*'3_0(+(x, 1)) ⇔ *'(gen_*'3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
No more defined symbols left to analyse.
Lemmas:
p(gen_s:0'4_0(+(1, n6_0))) → gen_s:0'4_0(n6_0), rt ∈ Ω(1 + n60)
fac(gen_s:0'4_0(+(1, n213_0))) → *5_0, rt ∈ Ω(n2130 + n21302)
Generator Equations:
gen_*'3_0(0) ⇔ hole_*'1_0
gen_*'3_0(+(x, 1)) ⇔ *'(gen_*'3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
No more defined symbols left to analyse.
Lemmas:
p(gen_s:0'4_0(+(1, n6_0))) → gen_s:0'4_0(n6_0), rt ∈ Ω(1 + n60)
Generator Equations:
gen_*'3_0(0) ⇔ hole_*'1_0
gen_*'3_0(+(x, 1)) ⇔ *'(gen_*'3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
No more defined symbols left to analyse.